Audionetwerken en protocollen, de huidige stand van zaken en wat kunnen we in de toekomst verwachten

Ing. Ruben van der Goor **Senior Application Engineer Digital Systems** Yamaha Music Europe, Commercial Audio

Topics

- Connection types and protocols
- Why networking, definitions
- Audio networks overview and history
- Ethernet compliancy
- AES67 and AVB

	_	
- 4	r	
- 1		
 _		
	_	

"A group or system of electric components and connecting circuitry, designed to function in a specific manner."

- C.			
	-		

"A group or system of electric components and connecting circuitry, designed to function in a specific manner."

- C.			
	-		

"A group or system of electric components and connecting circuitry, in which the logical signal path is independent of the physical layout"

- C.			
	-		

"A group or system of electric components and connecting circuitry, in which the logical signal path is independent of the physical layout"

- C.			
	-		

"A group or system of electric components and connecting circuitry, in which the logical signal path is independent of the physical layout"

- C.			
	-		

• P2P

Network

_	- 10	_	 - A -
		_	_

• P2P

Network

_	- 10	_	 - A -
		_	_

• P2P

Network

_	- 10	_	 - A -
		_	_

• P2P

Network

 \mathbf{O}

_	- 10	_	 - A -
		_	_

• P2P

Network

 \mathbf{O}

_	- 10	_	 - A -
		_	_

The are many ways to make a connection.

MADI

TwinLANe

perMac	Riedel	RockNet	AVB
ADAT		Optoc	core
nte	SuperMac		
SDI-SD/HD		EtherSour	nd ES100
R	oland REAC		
)	TDIF	Avion	Anet
AES67	AES/E	BU	AMAHA

 1	~
	- 1
~ ~	_

connercial audio

Only a few follow the definition of a network

ALC Networx Ravenna

Cirrus Logic CobraNet

BSS BluLink

Audinate Dante

Riedel MediorNet

Waves Soundgrid

AES50

TwinLANe

 1	~
	- 1
~ ~	_

Even fewer are ethernet compliant

ALC Networx Ravenna

BSS BluLink

Audinate Dante

Riedel MediorNet

Waves Soundgrid

AES50

TwinLANe

 1	~
	- 1
~ ~	_

Some history

Some history

Protocols

- Way of packing audio in a standardized format
- Backbone of the system
 - Control in parallel with audio
 - Audiochannel sacrificed for control
- All system feature various subsystems

A&H	- Giga-ACE
AVID	- AVB
Behringer	- AES50
Cadac	- MegaCOMMS
Crest Audio	- Soundgrid
DiGiCo	- MADI - Optocore
MIDAS	- AES50
Roland	- REAC
Soundcraft/Studer	- MADI
SSL	-MADI
	-Blacklight
Yamaha	-Dante
	-TWINLANe

_	- 10	_	 - A -
		_	_

Why network at all?

- Integration of audio, lighting, control, data, video
- Ultra large size systems possible, and stay flexible
- Distributed I/O, DSP, control
- Quality
- Cost
- Logistics

_	100	

Statistics

Research by RH Consulting 2015

_	100	

But, it might take some planning

- Who owns the network ?
 - Which rights do I have ?
 - What to do to get more rights....?
 - What does IT need to know from me?
 - What and how to communicate with IT?

- IP addresses ?
- Integration ?
- •VLANs?
- Security ?
- Maintanance ?

Protocol considerations ?

- Bandwidth requirements
- Redundancy requirements
- Clocking requirements
- Latency requirements
- Open or proprietary
- Level of flexibility
- Level of investment
- •

_	- 10	_	 - A -
		_	_

Ethernet protocols

CobraNet (1996)

+ License based protocol

- + Huge range of devices available
- + Still available
- Complex to design, lots of parameters
- Software from each manufacturer or even product
- Not developed anymore

Gobranet®

Ethernet protocols

EtherSound (2001)

- + License based protocol
- + 30 licensees
- + No need for switches, daisy chain
- + Low latency
- + One common software
- Can be tricky to design
- Limited in channel count, especially in redundant ring mode

Ethernet protocols

Dante (2006)

- Dante is a protocol developed by the Australian Audinate company
- Dante supports IEEE802.3 networks
- Dante is an IP based media network protocol
- Dante is sample and phase accurate
- Dante has a low latency (<1ms)
- Dante can have multiple sample rates and bit depths on the same network
- Dante is based on 1Gbps network (Legacy products may have 100Mbps)
- Dante is not limited to a maximum number of channels.
- Dante channel depends on available bandwidth (500 ch though 1Gbps)

Recent study by Roland Hemming

- Commonly available
- Use existing infrastructure
- Integration
- Great innovations
- Cheap components

- Commonly available
- Use existing infrastructure
- Integration
- Great innovations
- Cheap components

- Commonly available
- Use existing infrastructure
- Integration
- Great innovations
- Cheap components

Feature	Description	Description				
Performance						
Switching capacity and forwarding rate	Model Name	Capacity in Millions of Packets per Second (mpps) (64-byte packets)	Switching Capacity in Gigabits per Second (Gbps)			
All switches are wire-speed and non-blocking	SG300-10	14.88	20.0			
	SG300-10P	14.88	20.0			
	SG300-10MP	14.88	20.0			
	SG300-20	29.76	40.0			
	SG300-28	41.67	56.0			
	SG300-28P	41.67	56.0			
	SG300-52	77.38	104.0			
	SG300-52P	77.38	104			
	SG300-52MP	77.38	104			
	SG300-10SFP	14.88	20			

IP networking in a nutshell

Layer 1; Physical Layer

- NIC, CAT5E, WiFi
- Components: NIC, cable, fiber, hub

The 7 Layers of OSI

Transmit

Receive

_	- 10	_	 - A -
		_	_

IP networking in a nutshell

Layer 1; Physical Layer

- NIC, CAT5E, WiFi
- Components: NIC, cable, fiber, hub

Layer 2; Data Link Layer

- MAC addresses
- Components: Switch

The 7 Layers of OSI

Transmit

Receive

_	- 10	_	 - A -
		_	_

IP networking in a nutshell

Layer 1; Physical Layer

- NIC, CAT5E, WiFi
- Components: NIC, cable, fiber, hub

Layer 2; Data Link Layer

- MAC addresses
- Components: Switch

Layer 3; Network Layer

- IP addresses
- Components: Router, L3 switch

The 7 Layers of OSI

Transmit

Receive

_	- 10	_	 - A -
		_	_

- The only difference is the way of transporting.
- 0's and 1's are packed into the "payload" of a standard ethernet packet
- So networks have no sound, they only take care of transport.

_		
	_	_

Topology

- IEEE802.3 networking standards
- So the standard topology is a star network
- But other compliant topological structures can be used too.
 - Daisychains of switches
 - Ring of switches (needs RSTP)
 - Meshes (needs special switches)

- IEEE802 compliant techniques can be used
 - VLANs (IEEE802.1Q)
 - Trunking or Link aggregation (IEEE802.3ad)
 - IGMP snooping (RFC 3376)
 - RSTP (IEEE802.1D)

Networking requires a new mindset on:

Event planning and organisation

- Event planning and organisation
 - "BYOC, Bring Your Own Cable"
 - "Use black fibre/CAT"
 - "Use existing switch infrastructure"

- Event planning and organisation
 - "BYOC, Bring Your Own Cable"
 - "Use black fibre/CAT"
 - "Use existing switch infrastructure"
- Cabling discipline
 - "It's just a CAT cable"
 - "100m max"

- Event planning and organisation
 - "BYOC, Bring Your Own Cable"
 - "Use black fibre/CAT"
 - "Use existing switch infrastructure"
- Cabling discipline
 - "It's just a CAT cable"
 - "100m max"
- Updating strategy (multiple updates might be required!)

- Event planning and organisation
 - "BYOC, Bring Your Own Cable"
 - "Use black fibre/CAT"
 - "Use existing switch infrastructure"
- Cabling discipline
 - "It's just a CAT cable"
 - "100m max"
- Updating strategy (multiple updates might be required!)
- Troubleshooting

- Event planning and organisation
 - "BYOC, Bring Your Own Cable"
 - "Use black fibre/CAT"
 - "Use existing switch infrastructure"
- Cabling discipline
 - "It's just a CAT cable"
 - "100m max"
- Updating strategy (multiple updates might be required!)
- Troubleshooting
- Helicopter view

- AES initiative to protocolize interoperability between:
 - Dante (Audinate)
 - Livewire (Axia audio)
 - Q-Lan (QSC)
 - Ravenna (Lawo)
- Drafted and published around 9.2013, revised 10.2015
- Can be used with conventional switches

		-
-	_	_

- AES initiative to protocolize interoperability between:
 - Dante (Audinate)
 - Livewire (Axia audio)
 - Q-Lan (QSC)
 - Ravenna (Lawo)
- Drafted and published around 9.2013, revised 10.2015
- Can be used with conventional switches

		-
-	_	_

- AES initiative to protocolize interoperability between:
 - Dante (Audinate)
 - Livewire (Axia audio)
 - Q-Lan (QSC)
 - Ravenna (Lawo)
- Drafted and published around 9.2013, revised 10.2015
- Can be used with conventional switches

		-
-	_	_

- AES initiative to protocolize interoperability between:
 - Dante (Audinate)
 - Livewire (Axia audio)
 - Q-Lan (QSC)
 - Ravenna (Lawo)
- Drafted and published around 9.2013, revised 10.2015
- Can be used with conventional switches

However, a discoverymethod has not yet been agreed upon.

		-
-	_	_

- AES initiative to protocolize interoperability between:
 - Dante (Audinate)
 - Livewire (Axia audio)
 - Q-Lan (QSC)
 - Ravenna (Lawo)
- Drafted and published around 9.2013, revised 10.2015
- Can be used with conventional switches

However, a discoverymethod has not yet been agreed upon.

ここ	ここ	ここ	こ ここ
AES67	AES67	AES67	AES67

		-
-	_	_

A word on AVB

- AVB stands for Audio Video Bridging
- IEEE standard transport protocol for audio and video data over ethernet
- AVnu Alliance promotes interoperability between devices designed & manufactured by members.
- AVnu is the official organ that will certify AVB devices
- AVB focusses on:
 - Automotive industry
 - Consumer industry
 - Pro AV industry

Audionetwerken en protocollen, de huidige stand van zaken en wat kunnen we in de toekomst verwachten

Ing. Ruben van der Goor **Senior Application Engineer Digital Systems** Yamaha Music Europe, Commercial Audio

